Greenteahaus:  The Green Tea Reference Library

Neuroprotection of green tea against Alzheimer’s disease and Parkinson's disease

Return to Reference Library Index

(1) Kostrzewa RM, Segura-Aguilar J. Novel mechanisms and approaches in the study of neurodegeneration and neuroprotection. a review. Neurotox Res. 2003;5(6):375-83.

Cellular mechanisms involved in neurodegeneration and neuroprotection are continuing to be explored, and this paper focuses on some novel discoveries that give further insight into these processes. Oligodendrocytes and activated astroglia are likely generators of the pro-inflammatory cytokines, such as the tumor necrosis factor family and interleukin family, and these glial support cells express adhesion receptors (e.g., VCAM) and release intercellular adhesion molecules (ICAM) that have a major role in neuronal apoptosis. Even brief exposure to some substances, in ontogeny and sometimes in adulthood, can have lasting effects on behaviors because of their prominent toxicity (e.g., NMDA receptor antagonists) or because they sensitize receptors (e.g., dopamine D2 agonists), possibly permanently, and thereby alter behavior for the lifespan. Cell cycle genes which may be derived from microglia, are the most-recent entry into the neuroprotection schema. Neuroprotection afforded by some common substances (e.g., melatonin) and uncommon substances [e.g., nicotine, green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG), trolox], ordinarily thought to be simple radical scavengers, now are thought to invoke previously unsuspected cellular mechanisms in the process of neuroprotection. Although Alzheimer's disease (AD) has features of a continuous spectrum of neural and functional decline, in vivo PET imaging and and functional magnetic resonance imaging, indicate that AD can be staged into an early phase treatable by inhibitors of beta and gamma secretase; and a late phase which may be more amenable to treatment by drugs that prevent or reverse tau phosphorylation. Neural transplantation, thought to be the last hope for neurally injured patients (e.g., Parkinsonians), may be displaced by non-neural tissue transplants (e.g., human umbilical cord blood; Sertoli cells) which seem to provide similar neurotrophic support and improved behavior - without posing the major ethical dilemma of removing tissue from aborted fetuses. The objective of this paper is to invite added research into the newly discovered (or postulated) novel mechanisms; and to stimulate discovery of additional mechanisms attending neurodegeneration and neuroprotection.

(2) Youdim MB, Grunblatt E, Levites Y, Maor G, Mandel S. Early and late molecular events in neurodegeneration and neuroprotection in Parkinson's disease MPTP model as assessed by cDNA microarray; the role of iron. Neurotox Res. 2002 Nov-Dec;4(7-8):679-689.

Possible cell death mechanisms for pars compacta nigro-striatal dopamine neurons in Parkinson's disease include oxidative stress, inflammatory processes, nitric oxide iron accumulation, glutamate toxicity and diminished neurotrophic factor responses. There is a notion that Parkinson's disease is not a single disorder but a syndrome that can be initiated by several factors. Because of limitations of biochemical methods in the global analysis of neuronal death, a full picture of events has not been established. However, recently developed cDNA microarray or microchips, in which the global expression of thousands of genes can be assessed simultaneously, is changing the prospect for understanding the disease process, its progression, response to drugs, etc. The neurotoxin N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is considered the most valid model of Parkinson's disease. We employed the technique of cDNA microarray gene expression to determine the mechanism of action of MPTP in mouse substantia nigra. Also, we studied neuroprotective processes induced by several compounds, including R-apomorphine and the green tea polyphenol epigallo-catechin-3-gallate (EGCG). This was done in two ways: (1) the time-dependent acute effect of MPTP, for determining which of the initial genes might lead to dopamine neuron death and (2) gene expression at the time of MPTP-induced dopamine neuron death. We observed that early (acute MPTP) gene expression differs from effects seen at the time of death (chronic MPTP), and that early gene changes are crucial for setting into action genes that eventually cause dopamine neuron death. Furthermore, this process is a cascade of "domino" effects, some of which were previously established by biochemical means. However, our findings show an additional large number of events previously unknown. The neuroprotective drugs reversed some but not all of the gene expression, suggesting involvement of these genes in the neurodegenerative process. Because of the profound complexity of "domino" effect it is now reasonable to understand why a single neuroprotective drug has not shown clinical neuroprotective efficacy. Future multi neuroprotective drugs may be necessary for treatment of not only Parkinson's disease, but other neurodegenerative diseases (e.g. Alzheimer's disease) and detrimental states (e.g. ischaemia).

(3) Choi YT, Jung CH, Lee SR, Bae JH, Baek WK, Suh MH, Park J, Park CW, Suh SI.

The green tea polyphenol (-)-epigallocatechin gallate attenuates beta-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci. 2001 Dec 21;70(5):603-14.

Previous evidence has indicated that the neuronal toxicity of amyloid beta (betaA) protein is mediated through oxygen free radicals and can be attenuated by antioxidants and free radical scavengers. Recent studies have shown that green tea polyphenols reduced free radical-induced lipid peroxidation. The purpose of this study was to investigate whether (-)-epigallocatechin gallate (EGCG) would prevent or reduce the death of cultured hippocampal neuronal cells exposed to betaA because EGCG has a potent antioxidant property as a green tea polyphenol. Following exposure of the hippocampal neuronal cells to betaA for 48 hours, a marked hippocampal neuronal injuries and increases in malondialdehyde (MDA) level and caspase activity were observed. Co-treatment of cells with EGCG to betaA exposure elevated the cell survival and decreased the levels of MDA and caspase activity. Proapoptotic (p53 and Bax), Bcl-XL and cyclooxygenase (COX) proteins have been implicated in betaA-induced neuronal death. However, in this study the protective effects of EGCG seem to be independent of the regulation of p53, Bax, Bcl-XL and COX proteins. Taken together, the results suggest that EGCG has protective effects against betaA-induced neuronal apoptosis through scavenging reactive oxygen species, which may be beneficial for the prevention of Alzheimer's disease.

(4) Kim JH, Kim SI, Song KS. Prolyl endopeptidase inhibitors from green tea. Arch Pharm Res. 2001 Aug;24(4):292-6.

Three prolyl endopeptidase (PEP) inhibitors were isolated from the methanolic extract of green tea leaves. They were identified as (-)-epigallocatechin gallate, (-)-epicatechin gallate, and (+)-gallocatechin gallate with the IC50 values of 1.42 x 10(-4) mM, 1.02 x 10(-2) mM, and 1.09 x 10(-4) mM, respectively. They were non-competitive with a substrate in Dixon plots and did not show any significant effects against other serine proteases such as elastase, trypsin, and chymotrypsin, suggesting that they were relatively specific inhibitors against PEP. The isolated compounds are expected to be useful for preventing and curing of Alzheimer's disease.

(5) Pan T, Jankovic J, Le W. Potential therapeutic properties of green tea polyphenols in Parkinson's disease. Drugs Aging. 2003;20(10):711-21.

Tea is one of the most frequently consumed beverages in the world. It is rich in polyphenols, a group of compounds that exhibit numerous biochemical activities. Green tea is not fermented and contains more catechins than black tea or oolong tea. Although clinical evidence is still limited, the circumstantial data from several recent studies suggest that green tea polyphenols may promote health and reduce disease occurrence, and possibly protect against Parkinson's disease and other neurodegenerative diseases.Green tea polyphenols have demonstrated neuroprotectant activity in cell cultures and animal models, such as the prevention of neurotoxin-induced cell injury. The biological properties of green tea polyphenols reported in the literature include antioxidant actions, free radical scavenging, iron-chelating properties, (3)H-dopamine and (3)H-methyl-4-phenylpyridine uptake inhibition, catechol-O-methyltransferase activity reduction, protein kinase C or extracellular signal-regulated kinases signal pathway activation, and cell survival/cell cycle gene modulation. All of these biological effects may benefit patients with Parkinson's disease.Despite numerous studies in recent years, the understanding of the biological activities and health benefits of green tea polyphenols is still very limited. Further in-depth studies are needed to investigate the safety and efficacy of green tea in humans and to determine the different mechanisms of green tea in neuroprotection.

(6) Weinreb O, Mandel S, Youdim MB. Gene and protein expression profiles of anti- and pro-apoptotic actions of dopamine, R-apomorphine, green tea polyphenol (-)-epigallocatechine-3-gallate, and melatonin. Ann N Y Acad Sci. 2003 May;993:351-61; discussion 387-93.

Significant evidence has been provided to support the hypothesis that oxidant stress may be responsible for degeneration of dopaminergic neurons in the substantia nigra pars compacta in Parkinson's disease. Dopamine (DA), R-apomorphine (R-APO), green tea polyphenol (-)-epigallocatechine-3-gallate (EGCG), and melatonin are neuroprotective and radical scavenger compounds. The aim of this study was to establish the mechanism of the concentration-dependent neuroprotective and pro-apoptotic action of these drugs via gene expression and protein determination. cDNA microarrays provide new prospects to study and identify various mechanisms of drug action. We employed this technique for the study reported in this paper. Total RNA was extracted from SH-SY5Y cells exposed to low neuroprotective and high toxic concentrations of the drugs, followed by synthesis of cDNA, and hybridization to a microarray membrane related to apoptosis, survival, and cell cycle pathways. We demonstrated a concentration and time-dependent correlation between R-APO, DA, EGCG, and melatonin in modulation of cell survival/cell death-related gene pathways. The results were confirmed by quantitative real-time PCR and protein profiles. Unlike the effects of low concentrations (1-10 micro M), where an antiapoptotic response was manifest, a proapoptotic pattern of gene expression was observed at high toxic concentrations (50-500 micro M) of the antioxidants (e.g., increase in caspases, fas, and gadd45). Our results have provided novel insights into the gene mechanisms involved in both the neuroprotective and proapoptotic activities of neuroprotective drugs. We have shown that DA, R-APO, EGCG, and melatonin exhibit similar gene expression and protein profiles.

(7) Pan T, Fei J, Zhou X, Jankovic J, Le W. Effects of green tea polyphenols on dopamine uptake and on MPP+ -induced dopamine neuron injury. Life Sci. 2003 Jan 17;72(9):1073-83.

As antioxidants, polyphenols are considered to be potentially useful in preventing chronic diseases in man, including Parkinson's disease (PD), a disease involving dopamine (DA) neurons. Our studies have demonstrated that polyphenols extracted from green tea (GT) can inhibit the uptake of 3H-dopamine (3H-DA) and 1-methyl-4-phenylpyridinium (MPP(+)) by DA transporters (DAT) and partially protect embryonic rat mesencephalic dopaminergic (DAergic) neurons from MPP(+)-induced injury. The inhibitory effects of GT polyphenols on 3H-DA uptake were determined in DAT-pCDNA3-transfected Chinese Hamster Ovary (DAT-CHO) cells and in striatal synaptosomes of C57BL/6 mice in vitro and in vivo. The inhibitory effects on 3H-MPP(+) uptake were determined in primary cultures of embryonic rat mesencephalic DAergic cells. Inhibition of uptake for both 3H-DA and 3H-MPP(+) was dose-dependent in the presence of polyphenols. Incubation with 50 microM MPP(+) resulted in a significant loss of tyrosine-hydroxylase (TH)-positive cells in the primary embryonic mesencephalic cultures, while pretreatment with polyphenols (10 to 30 microg/ml) or mazindol (10 microM), a classical DAT inhibitor, significantly attenuated MPP(+)-induced loss of TH-positive cells. These results suggest that GT polyphenols have inhibitory effects on DAT, through which they block MPP(+) uptake and protect DAergic neurons against MPP(+)-induced injury.

(8) Choi JY, Park CS, Kim DJ, Cho MH, Jin BK, Pie JE, Chung WG. Prevention of nitric oxide-mediated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease in mice by tea phenolic epigallocatechin 3-gallate. Neurotoxicology. 2002 Sep;23(3):367-74.

In animal models of Parkinson's disease (PD), the toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is mediated by oxidative stress, especially by nitric oxide (NO). Inhibition of NO synthase (NOS) activity in the brain produces a neuroprotective effect against PD induced by MPTP Green tea containing high levels of (-)-epigallocatechin 3-gallate (EGCG) was administered to test whether EGCG attenuates MPTP-induced PD in mice through the inhibition of NOS expression. Both tea and the oral administration of EGCG prevented the loss of tyrosine hydroxylase (TH)-positive cells in the substantia nigra (SN) and of TH activity in the striatum. These treatments also preserved striatal levels of dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid (HVA). Both tea and EGCG decreased expressions of nNOS in the substantia nigra. Also tea plus MPTP and EGCG plus MPTP treatments decreased expressions of neuronal NO synthase (nNOS) at the similar levels of EGCG treatment group. Therefore, the preventive effects of tea and EGCG may be explained by the inhibition of nNOS in the substantia nigra.

(9) Iron chelation by green tea may be protective against Parkinson’s disease. Mandel S, Maor G, Youdim MB. Iron and alpha-Synuclein in the Substantia Nigra of MPTP-Treated Mice: Effect of Neuroprotective Drugs R-Apomorphine and Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate. J Mol Neurosci. 2004;24(3):401-16.

One of the prominent pathological features of Parkinson's disease (PD) is the abnormal accumulation of iron in the substantia nigra pars compacta (SNpc), in the reactive microglia, and in association with neuromelanin, within the melanin-containing dopamine (DA) neurons. Lewy body, the morphological hallmark of PD, is composed of lipids, redox-active iron, and aggregated alpha-synuclein, concentrating in its peripheral halo and ubiquitinated, hyperphosphorylated, neurofilament proteins. The capacity of free iron to enhance and promote the generation of toxic reactive oxygen radicals has been discussed numerous times. Recent observations, that iron induces aggregation of inert alpha-synuclein to toxic aggregates, have reinforced the critical role of iron in oxidative stress-induced pathogenesis of DA neuron degeneration and protein degradation via ubiquitination. N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- and 6-hydroxydopamine-induced neurodegeneration in rodents and nonhuman primates is associated with increased presence of iron and alpha-synuclein in the SNpc. The accumulation of iron in MPTP-induced neurodegeneration has been linked to nitric oxide-dependent mechanism, resulting in degradation of prominent iron regulatory proteins by ubiquitination. Radical scavengers such as R-apomorphine and green tea catechin polyphenol (-)-epigallocatechin-3-gallate, as well as the recently developed brain-permeable VK-28 series derivative iron chelators, which are neuroprotective against these neurotoxins in mice and rats, prevent the accumulation of iron and alpha-synuclein in SNpc. This study supports the notion that a combination of iron chelation and antioxidant therapy, as emphasized on several occasions, might be a significant approach to neuroprotection in PD and other neurodegenerative diseases.

(10) Inhibition of acetylcholinesterase and beta-secretase by green tea is protective against Alzheimer’s disease. Okello EJ, Savelev SU, Perry EK. In vitro anti-beta-secretase and dual anti-cholinesterase activities of Camellia sinensis L. (tea) relevant to treatment of dementia. Phytother Res. 2004 Aug;18(8):624-7.

The primary target of licensed drugs for the treatment of Alzheimer's disease is the inhibition of the enzyme acetylcholinesterase, although preventing beta-amyloidosis is a prime target for drugs in development. The in vitro dual anti-cholinesterase and beta-secretase activities of Camellia sinensis L. extract (tea) is reported. Green and black tea inhibited human acetylcholinesterase (AChE) with IC(50) values of 0.03 mg/mL and 0.06 mg/mL respectively, and human butyrylcholinesterase (BuChE) with IC(50) values 0.05 mg/mL. Green tea at a final assay concentration of 0.03 mg/mL inhibited beta-secretase by 38%. These novel findings suggest that tea infusions contain biologically active principles, perhaps acting synergistically, that may be used to retard the progression of the disease assuming that these principles, yet to be identified, reach the brain.

(11) Potential use of green tea for the treatment of Alzheimer’s disease, based animal studies. Kim HK, Kim M, Kim S, Kim M, Chung JH. Effects of green tea polyphenol on cognitive and acetylcholinesterase activities. Biosci Biotechnol Biochem. 2004 Sep;68(9):1977-9.

The effect of tea polyphenol (TP) on cognitive and anti-cholinesterase activity was examined in scopolamine-treated mice. Chronic administration of TP significantly reversed scopolamine-induced retention deficits in both step-through passive avoidance and spontaneous alternation behavior tasks. Furthermore, TP exhibited a dramatic inhibitory effect on acetylcholinesterase activity. This finding suggests that TP might be useful in the treatment of Alzheimer's disease.

(12) Green tea may be protective against Parkinson’s and Alzheimer’s diseases by acting as metal chelators and antioxidants. Weinreb O, Mandel S, Amit T, Youdim MB. Neurological mechanisms of green tea polyphenols in Alzheimer's and Parkinson's diseases. J Nutr Biochem. 2004 Sep;15(9):506-16.

Tea consumption is varying its status from a mere ancient beverage and a lifestyle habit, to a nutrient endowed with possible prospective neurobiological-pharmacological actions beneficial to human health. Accumulating evidence suggest that oxidative stress resulting in reactive oxygen species generation and inflammation play a pivotal role in neurodegenerative diseases, supporting the implementation of radical scavengers, transition metal (e.g., iron and copper) chelators, and non-vitamin natural antioxidant polyphenols in the clinic. These observations are in line with the current view that polyphenolic dietary supplementation may have an impact on cognitive deficits in individuals of advanced age. As a consequence, green tea polyphenols are now being considered as therapeutic agents in well controlled epidemiological studies, aimed to alter brain aging processes and to serve as possible neuroprotective agents in progressive neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. In particular, literature on the putative novel neuroprotective mechanism of the major green tea polyphenol, (-)-epigallocatechin-3-gallate, are examined and discussed in this review.


Fleminger, Inc. • 160 Hawley Lane, Suite 205 • Trumbull, CT 06611
©2004-2005. Fleminger, Inc.